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MULTIPLE CHANNEL ADAPTIVE FILTERING USING
A FAST ORTHOGONALIZATION NETWORK:
AN APPLICATION TO EFFICIENT PULSED

DOPPLER RADAR PROCESSING

I. INTRODUCTION

The direct adaptive filtering of multiple input channels by Gram-Schmidt orthogonalization has
been the subject of intense research during the past decade [1-14]. The Gram-Schmidt technique
(sometimes called the Adaptive Lattice Filter) has been shown to yield superior performance si-
multaneously in arithmetic efficiency, stability, and convergence times over other adaptive algorithms.

Arithmetic efficiency has been especially demonstrated in the filtering of stationary convariance
sequences [4-14]. The stability of the algorithm is enhanced because it does not require the calculation
of an inverse convariance matrix as does the Sample Matrix Inversion (SMI) algorithm of Reed, Mal-
let, and Brennan [15]. A overview of Adaptive Lattice Filters and a large bibliography on this subject
are contained in Ref. 5.

In adaptive filtering, it is desirable to find the optimal weighting of multiple input channels such
that the output signal to noise power ratio (S/N) is a maximum. The desired signal is associated with a
desired signal column vector, s, where s = (sl,s 2 , ... , sN) T, Nis the number of input channels, and T
denotes the vector transpose. The vector component, s,,n=1, 2, ... , N represents the desired signal's
component in the nth input channel. If w is an N-length column vector denoting the optimal weighting
of the N input channels and x is an N-length column vector denoting the data from the N input chan-
nels, then it can be shown [16] that w must satisfy the following vector equation:

RXXw = As*, (1.1)

where

Rva = E{x*x5, (1.2)

Au is an arbitrary constant which for convenience we set equal to one, Etl denotes the expected value,
and * denotes the complex conjugate. Equation (1.1) is often referred to as the Applebaum Adaptive
Algorithm [16]. The matrix, R.,, is called the input covariance matrix.

For some filtering applications, there may be as many output channels as there are input channels
(such as a doppler processor). Hence, there will be N desired signal vectors. We define S to be the
NxNsteering matrix of desired signal vectors; i.e.,

S = (S S2 ... SN) (1.3)

where s,,n = 1, 2, ... N are column vectors of the desirable signals. If W is defined as the optimal
NxN weighting matrix, i.e., the weights that optimize the S/N in each of the output channels, then
these weights satisfy the following matrix equation

RvoW = S. (1.4)

Problems occur in the solution for the weights if RX, is ill conditioned. Due to computational
inaccuracies, the algorithm can become unstable and the output channels extremely noisy. Adaptive
lattice filtering does not normally exhibit stability problems.

Manuscript approved April 27, 1984.

1



KARL GERLACH

In fact the weights formulated by Eq. (1.4) are not calculated at all when using adaptive lattice
filtering. The data in the input channels are filtered directly through an orthogonalization network as is
demonstrated in the following sections. However, the output channels will have the same or better (if
R,, is ill conditioned) S/N performance in each output channel as if the weights were calculated exactly
in Eq. (1.4) and applied to the input data set.

Most of the research on Adaptive Lattice Filters has concentrated on the processing of stationary
convariance sequences especially in the area of discrete-time linear prediction systems [4-14]. This
implies that if rvj is the iJ element to R,,o, then

rj= r,.i. (1.5)

Hence, the convariance matrix, R,,, has the Toeplitz form.

In this report, we consider the efficient processing of channels that are not necessarily stationary
with respect to one another so that Eq. (1.5) is not necessarily true. However, the input data on a
given channel will be assumed stationary with respect to other data in that channel. The algorithm
developed in the following sections will be a multichannel adaptive lattice filter which is structured for
arithmetic efficiency in addition to retaining the good stability and fast convergence properties of
orthogonalization networks. In Section VIII, we apply this algorithm (called a fast orthogonalization
network) to implement an arithmetically efficient adaptive pulse doppler radar processor.

II. DECORRELATORS

Consider two channels of complex valued data: XI and X2. We desire to form an output channel,
Y, which is decorrelated with X2; i.e.,

YX2*= 0 (2.1)

where the overbar denotes the expected value. This can be accomplished as follows. Let us write

Y= X- wX2 (2.2)

and find a constant weight, w, such that Eq. (2.1) is satisfied. It can be shown that

X1 X 2 (2.3)

IX 212

where I * denotes the complex magnitude function and * denotes the complex conjugate. Figure 1
represents this decorrelation processor (DP).

In a digital implementation of the decorrelator, samples of the two input channels would be taken
and the weight would be estimated. Let {Xi(1),X1 (2),... , Xi(N3)) i = 1,2 denote the input data
sequences for XI and Y2 where Ns is the total number of discrete samples taken per channel. Then the
decorrelation weight could be estimated as

N.,

I Xi (n) X2 * (n)
n-I (2.4)

IS IX2(n) 12
n-I

Note that Eq. (2.4) does not account for changes in the noise environment. If the noise environment
is nonstationary, then such techniques as a "sliding window" or "forgetting factor" could be used on the
input data. This is discussed further in Section V.
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l 2

I DP

Fig. 1 - Decorrelation processor (DP)

Let us consider N channels of complex valued data: X1,X2,... ,XN. To form an output channel,
Y, which decorrelated with X2 , X3, ... , XN, we write

Y = X- w 2X 2 - W3 X3 - * WNXN. (2.5)

We desire to find the weights, w,,n=2,3, ... ,Nsuch that

YXn*=0 n = 2,3, ... ,N.

We define a weight vector, w = (wI,w2 , ... ,WN)T where w_ 1. It can be shown that w is the solu-
tion of the following vector equation:

0

Rxxw = A (2.6)

'0

where Rxx is the NxNconvariance matrix of the input channels, i.e.,

Rxx = E[{X*X2'X (2.7)

and X = (X1,X2, . XN) . The constant A is not arbitrary but chosen so that wI = 1.

From Eq. (2.6), it is seen that the decorrelator could be implemented by taking data samples,
forming a sample covariance matrix as implied by Eq. (2.7), solving Eq. (2.6) for the weights, and
applying these weights to the input channels.

Another implementation of this decorrelation process is called Gram-Schmidt (GS) decomposition
[1-51 as illustrated in Fig. 2 which uses the basic two-input DP as a building block [3]. GS decomposi-
tion decorrelates the inputs one at a time from the other inputs using the basic two-input DP as shown
in Fig. 1. For example as seen in Fig. 2, in the first stage or level of decomposition, XN is decorrelated
with XI, X2, ... , XNI. Next, the output channel which results from decorrelating XN with XNI is

3
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XN

LEVEL 1 L O P P

LEVEL 2 D D OP

* . .

LEVEL N-2 P DP

LEVEL N-i OP

OUTPUT

Fig. 2 - N-channel decorrelator

decorrelated with the other outputs of the first level of DPs. The decomposition proceeds as seen in
Fig. 2 until a final output channel is generated. This output channel is totally decorrelated with the
input: X2, X3, ... , XN. Note that the GS decomposition is not unique; i.e., the order in which
X 2, X3, ... , XN are decorrelated from XI is arbitrary.

For N channels, the total number of DPs needed for GS decomposition is 0.5N(N - 1). Hence,
this number of decorrelation weights must be computed. For a digital implementation, these weights
are determined sequentially. First, the first level weights are estimated after which the output data for
the first level are calculated. These output data are used as inputs to the second level from which the
second level weights can be calculated. The output data of the second level are generated by using
these weights and the second level input data. The process continues until the (N - )th level weight
and outputs are calculated.

For notational purposes, we define the channel input appearing on the right-hand side of the DP
as seen in Fig. 1 as being the input which is decorrelated with the channel appearing on the left-hand
side. For the multiple channel case, all inputs appearing to the right of the far left input will be
decorrelated from this input.

III. MULTIPLE CHANNEL ADAPTIVE LATTICE FILTER

In this section, we present a method for directly filtering multiple input channels into multiple
output channels by using a multiple channel adaptive lattice filter and the concepts developed in the
previous section.

Assume that the steering matrix as seen in Eq. (1.4), S, is nonsingular. We configure a multi-
channel processor as seen in Fig. 3. The original input data column vector, x, is multiplied by the
matrix inverse of S* to form another column vector, X, which is also a multichannel process. Let W'
be the optimal weighting matrix of X such that the S/N associated with each of the desired signals
channels is maximized. It can be shown that W' satisfies the following matrix equation

RxxW' 1, (3.1)

4
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)p

INPUT CHANNELS

X1 X2 XN

I I . . . I

s *-1

(11 X 2 I XN

ORTHOGONALIZATION
NETWORK

OUTPUT CHANNELS

Fig. 3 - Multiple-channel adaptive
lattice filter

where Rxx is defined by Eq. (2.6) and I is the Nx N identity matrix. Actually

Rx = SIRXXSal (3.2)

where t denotes conjugate transpose. The steering matrix, S , has been transformed into a steering
matrix which is the identity matrix.

If we examine the new desired signal vectors (which are the column vectors of the identity
matrix), the nth channel has a desired signal vector:

(0 0 . .. 0 1 o o . .. 0) T

t
nth position.

Hence, it is seen that the form of Eq. (3.1) for the nth channel is very similar to Eq. (2.6) except that
the "1" in the steering vector is not necessarily in thel first position as seen in Eq. (2.6). However, to
perform the decorrelation process, it is only necessary to rearrange the input channels so that all other
channels are decorrelated with the nth input channel, X", as seen in Fig. 4. By using this decorrelation
procedure, the N channel orthogonalization network seen in Fig. 3 is now defined.

The ordering of the input channels for decorrelation as seen in Fig. 4 was arbitrary. It is shown in
the next section that the input channels can be ordered so as to greatly reduce the required number of
arithmetic operations. If there were no logic behind choosing the ordering of the input channels, it
could be shown that the number of weights that are calculated by using this decorrelation procedure is
0.5N2 (N - 1). In the following section we develop an algorithm which requires approximately
1.SN(N - 1) weights for the same decorrelation process.

It is important to point out that the desired signals must be small or with a low duty cycle with
respect to the noise in the respective channels. Otherwise, desired signals whose vector components
are slightly different from the steering vector components will be cancelled due to the decorrelation
process. Radar returns sampled in range are a good example of a low duty cycle desired signal where
targets are sparsely distributed across the range bins.

5
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X1 X2 XN X2 X3 XN XI X3 X4 XN Xi X2 XN X1 X2 XN-1

DP DP DP 0S*DP

CHANNEL1 CHANNEL 2 CHANNEL 3 * . . CHANNEL N
OUTPUT OUTPUT OUTPUT OUTPUT

Fig. 4 - An arbitrary multichannel orthogonalization network

IV. FAST ORTHOGONALIZATION NETWORK

In this section, we present a methodology of configurating the two input decorrelation processors
(DPs) to synthesize the N-channel orthogonalization network seen in Fig. 3 so that numerical efficiency
is achieved. To this end, we introduce the following notation. A single channel decorrelator will be
represented as

Ch I= [XI, X 2, X 3 , ... , XN] (4.1)

where X2, X3, ... , XN are decorrelated from XI and XN is decorrelated first, XN1I is decorrelated
second, and so on. Figure 2 shows the structure of the correlator. The channel variable, Ch1, refer-
ences this structure to channel 1 or the XI channel. The X,, n = 1, 2, ... , N will be called the ele-
ments of the structure.

Numerical efficiency of the algorithm to be presented is achieved by taking advantage of redun-
dancies that can occur for two different decorrelator structures. For example, let there be eight chan-
nels. Channels 1 and 4 can be generated as follows:

Chi = [Xl, X 2 , X 3, X 4, X 5, X6 , X7 , X 8]

Ch 4 = [X 4, X 3, X2 , XI, X5, X 6, X7 , X 8]. (4.2)

Note that Ch1 and Ch4 have the same four input channels at the far right. In the actual implementa-
tion, the substructure associated with these four rightmost channels can be shared by Ch1 and Ch4 as
illustrated in Fig. 5. In fact, anytime two channels have exactly the same far-right channels as indicated
by the decorrelator structure, the substructure associated with these far-right elements can be shared in
the implementation process.

For convenience, let N = 2m. In general we can configure 2m-1 output channels to have the com-
mon substructure of 2m-1 input channels; 2m-2 output channels to have the common substructure of
2m-2 input channels; and so on. Because of the structuring, the total number of weights that must be
calculated will be approximately proportional to N2 . A further discussion of the number of arithmetic
operations is given in the next section.

The following algorithm sequentially generates structures which can be implemented in a numeri-
cally efficient manner:

STEP 1 Generate root structure: [XI, X2, ... , X2,J.

STEP 2 Generate a structure which is the inverted order of root structure: [X2m, . .. , XI].

6
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SHARED ha,
SUBSTRUCTURE

H hi ;h4

Fig. 5- Example of substructure sharing

STEP 3 Generate 2 structures from the preceding 2 structures which have the first 2-1 elements of
the preceding structures in inverted order. All other elements remain the same.

STEP 4 Generate 4 structures from the preceding 4 structures which have the first 2m-2 elements of
the preceding structures in inverted order. All other elements remain the same.

*. .

* * m

* * 0

STEP k Generate 2 k-2 structures from the preceding 2 k-2 structures which have the first 2 m-k+2
elements of the preceding structures in inverted order. All other element remain the same.

* 0 0

* 0 0

STEP m+1 Generate 2m-1 structures from the preceding 2m1 structures which have the first 2 ele-
ments of the preceding structures in inverted order. All other elements remain the same.

For example, if N = 23 (where m = 3), the following structures would be generated sequentially
by using the above procedure:

7
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STEP 1 [XI, X 2, X 3, X4 , X 5, X 6, X 7, X8] = Chi

STEP 2 [X 8, X7 , X 6, X 5, X 4, X 3, X 2, XI] = Ch8

STEP 3 1X4 , X 3, X 2, Xi, X 5, X6, X 7, X8 1 = Ch4

[X5, X6, X 7, X8, X4, X 3, X 2, XI] = Ch 5

STEP 4 [X2, X', X3, X 4, X 5 , X6 , X7 , X8] = Ch2

[X7, X8, X6, X5, X4, X3, X2, XI] = Ch7

[X 3, X4, X2, X', X5, X6, X7, X8] = Ch3

[X6, XA5 X 7, X 8 , X 4, X3, X2 , XI] = Ch6

Note that channels 1, 2, 3, 4 have the substructure associated with X5, X6, X7, X8, and that channels
5, 6, 7, 8 have the substructure associated with X4, X3, X2, XI. Also note that Chi and Ch2 have the
same 6-element substructure as do the channel pairs: (Ch4 , CO3), (Ch8, CO7), and (Ch5, Ch6 ). A
complete realization of the 8 output channels is illustrated in Fig. 6.

X1 X2 X3 X4 X5 X6 X7 X8

Ch1

Fig. 6 - Complete realization of an eight-channel Fast Orthogonalization Network

V. NUMBER OF ARITHMETIC OPERATIONS

Each two input decorrelation processors (DPs) of the Fast Orthogonalization Network (FON) as
depicted in Fig. 6 will have a complex weight associated with it. The number of DPs or complex
weights associated with a FON can be found by considering the number of DPs at each level of the net-
work. From Fig. 6, we see that the number of levels equals N - 1. If Lk is equal to the number of
DPs at each level, then it can be shown that

8
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Li= 2m+' - 2 .1
L2= 2m+1 - 2 2

L3= 2m+' - 2 3

L2 m1 = 2m+1 - 2 . 2m-1 (5.1)

L2m_,+l 2m+1 -22. 1

L2m-1+2= 2m+1 -22 2

L 2m+2m2= 2 m+1 - 22. 2 m-2

L2m-1 = 2m+1- 2 m - 1.

Thus, the total number of DPs, NDP, needed for a FON is derived by adding the right-hand sides
of the above system of equations. It can be shown that

NDP= - N(N- 1)- 2 N log 2N. (5.2)
2 2

The above number is also be equal to the total number of complex weights associated with a
FON. The total number of operations associated with a FON is dependent on whether the algorithm is
implemented (1) to recursively update the weights as new data samples arrive or (2) to calculate the
weights as a function of a block of N, data samples in each of the N channels.

Case 1: Recursive Processing

Let w (k) be a scalar weight associated with one of the two input DPs for the kth set of data sam-
ples (k = 1, 2, ... , N). Also let UR (k), UL (k), and ut (k) be the complex valued scalar right-side
input, left-side input, and output of this particular DP respectively on the kth sample as seen in Fig. 7.
In this block diagram, input uR(k) is decorrelated with input uL(k) and the decorrelated output is
called uout(k). Also, we define two complex valued scalar state variables associated with this DP:
vP(k) and v 2 (k). We see from Eq. (2.4) that w(k) can be updated by using uR(k), uL(k), vI(k), and
V2(k) as follows:

vI(k) = (1-a) vI(k- 1) +a uL(k)uR*(k) (5.3a)
v2(k) = (1- a) v2(k - 1) + a IuR(k)12 (5.3b)

w (k) = (k) (5.3c)
v2 (k)

where 0 < a < 1 is a constant which controls how fast past data are forgotten. This forgetting factor is
necessary if the statistics of the input channels are time-varying.

9
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F 7 UOUT w d p

Fig. 7 -Recursive two-input decorrelator processor (DP)

The output of the specified DP has the form

uOut(k) = UL (k) -w (k) uR (k). (5.4)

By inspecting Eqs. (5.3) and (5.4), we see that there are seven complex multiplication operations
(CMOPs) and one complex division operation (CDOP) per DP per data step or iteration. If N& p and

C~op are the number of CMOPs and CDOPs per iteration respectively, then by using Eq. (5.2), we
can show

NCfMop = 10.5N(N - 1)-3.5N 1og2 N

NCRDOp = 1.5N(N - 1) - 0.5N log2 N.

(5.5)

(5.6)

Case II: Block Processing

For block processing, the total number of CMOPs, NcMSop, is the sum of the number of CMOPs
associated with finding the NDP weights, and the number of CMOPs associated with processing the N,
input data samples per channel through a FON.

It can be shown by using Eq. (5.2), inspection of Eq. (2.4), and the fact that each DP must pro-
cess N, data points that

NCBop = N,(4.5 N (N - 1) - 1.5 N log2N). (5.7)

Since only one CDOP per DP is used in the block processing technique, it follows that

NCBD)O p= 1.5 N(N -1)-0.5 N log 2 N. (5.8)

Let us compare the arithmetic efficiency of the block-processed FON algorithm with the Sample
Matrix Inversion (SMI) algorithm [15]. For the SMI there are N 3N

2 CMOPs needed to calculate the
sample covariance matrix, Rxx, and approximately N3/3 CMOPs required to find R-X. If the steering
matrix is the identity matrix, then the weighting matrix equals R-i 1. Finally, there are N2 NS CMOPs
required to multiply the N x N weighting matrix times the N x N, input data matrix. Thus, if N84MM%
is the number of CMOPs needed to implement the SMI algorithm, then

10
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NJo - ± N3 + 2 Ns N. (5.9)

It is shown in Ref. 15 that if the input channels are zero mean gaussian processes, then the aver-
age of the output S/N will be within 3 dB of the optimum S/N after 2N data samples per channel.
Thus, if we set N, = 2N, then for N >> 1

NAfop 9 N3 (5.10)

and

NEsmmOl- 4.33 N3 . (5.11)

Hence we see that the FON algorithm is about half as fast as the SMI algorithm in attaining good S/Ns
(within 3 dB of the optimum). However, we note that the FON algorithm does not require the
inversion of a matrix which can lead to numerical instabilities if the sample covariance matrix is ill-
conditioned.

VI. PARALLEL PROCESSING

From Fig. 6, it is seen that there are exactly N - 1 levels of DPs associated with a FON. From
Eq. (5.1), we observe that the maximum number of DPs per level is 2N - 2 and the minimum
number is N. For the block processing algorithm described in the previous section we see that as the
data (all NSLk-l data points) are processed through the kth level that the input data may be discarded
and the output data (NSLk data points) become the new input data set. Hence 2N - 2 parallel DPs
could be configured as seen in Fig. 8.

|INPUT DATA: N x L k-

INPUTO
CHANNELS

| ROUTING ALGORITHM l

Lm > ?:d~~~~~SADMTPLE
OUTPUT lDELAYCHANNELS'o . ..

OUTPUT DATA' N X Lk

Fig. 8 - Parallel processing architecture of the Fast
Orthogonalization Network (FON)

We allow these 2N - 2 DPs to simultaneously perform all of the two-input DPs at a given level
as shown in Fig. 6. However, for this to occur there must be a routing algorithm whose function it is
to see that the Lk-1 input data channels are inputted into the proper DPs. From Fig. 8, we see that the
output data are stored back into the input data memory bank. After sequencing N - 1 times through
the DPs, the algorithm is finished.

From inspecting Eq. (2.4), it is observed that the processing time through a DP is proportional to
the number of data points per input channel, N, Since the bank of 2N - 2 DPs is used N - 1 times,
the total processing time, TPARA, using a parallel architecture, is approximately proportional to the
number of input channels and the number of data points per channel; that is,

11
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TPARA - NNs. (6.1)

Hence, parallel processing, by using the architecture seen in Fig. 8, can significantly decrease the
processing time. This reduction occurs because of the inherent structure of the FON. In addition, the
number of parallel DPs required is 2N - 2 which reduces the hardware requirements.

VII. SOFTWARE ALGORITHM

A software algorithm called the Fast Orthogonalization Network (FON) algorithm has been de-
vised which generates the 2m decorrelator output channels from the 2m input channels by using the
common substructures of the various channels as described in Section IV (note that N = 21). Let each
of the 21 input channels have N, sample points. Thus in the nth channel, XQ(1), XQ(2), ... , X,(N,)
are observed.

The algorithm requires at various points to reduce 2k input channels to 2 k1 output channel
through a partial orthogonization as illustrated in Fig. 9. The 2 k-1 rightmost input channels are
decorrelated with the 2k-1 leftmost input channels. If U(I, J) are the input samples where
J = 1, 2, ... , 2 k indicates the channel number and I = 1, 2, ... , N, is the sample index, the follow-
ing software algorithm called the kth Order Partial Orthogonalization algorithm generates the desired
2 k-1 output channels:

1. Set V(0 )(i, J) = U(I, J); J = 1, 2, ... ,2k I = 1, 2, .. ,Ns

2. Set h = 1, Jo= 2k

3. Calculate recursively

VW )(, J) = V(h-1)(j, J) - V(h-1)(I, JO) W(h)(J)

where
N

I V(Jh-)(MJ) V(h-I)(M'j0)
W(h) (J) = M-1N-

Vlh I) Z*(Mjo) 12
M-l

J=1, 2, 2k -h; I = 1, 2., N,

4. Set h h + 1, J0o= J 0 -1

5. If h < 2k-' GO TO 3

6. end

The final outputs are contained in V(2k1) (IJ)

The FON algorithm requires that the input channels, XI, X2, . XN, be commutated so that
the final output channels of the FON are properly aligned. (This problem also occurs with the FFT
algorithm, but a commutation algorithm matches the proper output channel with the input channel.)
By properly aligned, we mean that the kth output channel of the FON algorithm is decorrelated with
input channels: 1, 2, ... , k - 1, k + 1, ... , N. The following algorithm called the Commutated
Indexing algorithm computes the commutated indices and stores them in an N element array called
INDEX.

12
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2k INPUT CHANNELS

U1 U2 k_3 U~k 2 U~k_ I U~k

LEVEL P D

LEVEL 2 P * * . . . P P

0 0 0 0 0

0 0~~~~~~

LEVEL 2k-if * a .

2k-1 OUTPUT CHANNELS

Fig. 9 - Partial orthogonalization, 2k input channels
to 2 k-1 output channels

1. Set INDEX (1) = 1, INDEX (2) = 2

2. Set J = 1

3. Set INDEX (2J + k) = INDEX (k) + 3 2J- 1; k = 1, 2J-1

4. Set INDEX (2J + k) = INDEX (k) + 2JI; k = 2J- + 1, ... , 2J

5. J=J+1

6. IfJ< m GOTO3

7. end

After defining these preliminary algorithms, we now give the complete FON algorithm:

1. Input X(l, J) array; J= 1, 2, ... , 2', I = 1, 2, ... , N,

2. Calculate the commutated indices by using the Commutated Indexing algorithm.

3. Transfer X(I, INDEX(J)) - Y(I, J)

J= 1, 2, 2m, I= 1, 2, . ,

4. Set k = m

5. Set L = 0

13
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6. Transfer Y(I, J + 2kL) - U(I, J)

J = 1, 2, ... , 2 k; 1 = 1, 2, ..., N,

7. Calculate VA2kl)(, J); J = 1, 2, ... , 2k-, I 1, 2, ... , N, by using the kth Order
Partial Orthogonalization algorithm.

8. Transfer VJ2k-')(I, J) - T(I, J)

J = 1, 2, ... , 2 k-1, I = 1, 2, ..., N,

9. Transfer Y(l, 2kL + J) - U(I, 2 k + 1 - J)

J = 1, 2, ... , 2 k; 1 = 1, 2, ... , N,

10. Calculate V(2k-1)(I, J); J = 1, 2, ... , 2k-1; I 1, 2, ... , N by using the kth Order
Partial Orthogonalization algorithm.

11. Transfer T(1, J) - Y(I, 2kL + J)

J = 1, 2, ... , 2 k-1, I = 1, 2, ..., N5

12. Transfer Vk- 1)(I, J) - Y(I, 2kL + 2 k-1 + 1)

J =1, 2, ... , 2k;I=1, 2, ... ,Ns

13. L= L + 1

14. If L < 2 m-k GO TO 6

15. k= k-1

16. If k > 0 GO TO 5

17. end

VIII. AN APPLICATION: ADAPTIVE DOPPLER PROCESSING

Adaptive filtering can be applied to radar doppler filter design [17,18]. Doppler filters are
designed to accept doppler frequency shifted moving targets while rejecting the returns from the target
background (clutter). The clutter is usually slow moving so that its energy is normally concentrated
about the zero doppler frequency. A bank of filters is used to cover the entire doppler band; i.e., the
doppler band is equally divided into subbands. Ideally, it would be desirable to place a rectangular
bandpass filter about each subband so that the large clutter return is completely rejected out of band.
However, only approximations of this rectangular filter are realizable. It has been shown [17,18] that
adaptive doppler processing yields superior signal-to-clutter power ratio improvement performance over
these approximate rectangular filter implementations. This results because each doppler filter is
designed not only to accept a desired signal but also to place nulls at frequencies out of band where
clutter returns exist. Each doppler filter is optimized with respect to the doppler filter's allocated sub-
band by use of the Applebaum algorithm.

The input channels, xn, n = 1, 2, ... , N, are formed by taking time-delayed samples (usually
one pulse repetition interval (PRI)). Hence if r(t) is the received radar signal, then

14
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x"= r(t - nT), n = 1, 2, ... , N. (8.1)

There are N weights associated with each of the N doppler filters. These N2 weights, W, are the
solution of the following matrix equation:

R;xW = S* (8.2)

where R., is the covariance matrix of the N input channels. If the input data are statistically stationary
in time, then R., is a Toeplitz matrix. The matrix S is the matrix of steering vectors signifying the
various doppler filter subbands. In general, the steering matrix has the following form:

a1 a, al . a,

a2 a2 FN a2 N ' ' a2 N

a3 a3 N a3 rN 2 ' a3 N. .S = . . . . . (8.3)

.NarN ,2(-1 . . ... I (-1 (-1
aN aNr NI aNFN N N

where rN = exp {-j 21r/N) and j = -v. For the Brennan and Reed doppler processing algorithm
[17], an = 1, n = 1, 2, ... , N. For this algorithm, each of the N doppler filters is optimized at one
particular doppler frequency by use of the Applebaum algorithm. The particular doppler frequency is
chosen to be at the center of the given subband. However, because in general the doppler shift is un-
known within a given subband, any desired signal whose doppler is not at the center of one of these
subbands will not be properly matched and signal detection will degrade especially at dopplers that are
close in to the clutter spectrum.

Andrews [18] devised a steering matrix that gives superior performance. For this algorithm the
doppler shift is assumed unknown across a particular subband, and the filter response is optimized over
the entire subband. In essence, the best N-point finite impulse response (FIR) filter is fitted to a
desired rectangular filter centered in a particular subband with a phase bandwidth of 21r/N. Andrews
shows that these weights are given by

i rr N+ 1
smN n-

an n= 1, 2, _ ,2 N. (8.4)

N 2

The form of S * as given by Eq. (8.3) is such that it can be factored as

S* = AB (8.5)

where A is a diagonal matrix with diagonal elements, an *, n = 1, 2, ... N and

B= ( 1~-l(-)); n, I= 1, 2, ............ ,N. (8.6)

If we employ the multiple channel adaptive lattice filter by using a FON as depicted in Fig. 3, we
see that the N input data channels, xj, X2, ... , XN, are transformed by S*-1 = B-1A-1. Due to the
special form of the matrix, B, it can be shown that
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B-= B*. (8.7)

Therefore, the N output channels, X = (XI, X2, ... , XN)T, that result by multiplying the N input
channels by S -I are given by

X = B*A-lx. (8.8)

Equation (8.8) indicates that the input data channels, x, are first weighted by the inverse of the diago-
nal matrix A, which is equivalent to weighting the nth channel by l/a,, n = 1, 2, ... , N. The
weighted channels are then multiplied by the matrix, B . It can be shown that the transformation that
results by multiplying a set of N channels by B * can be implemented by using a fast Fourier transform
(FFT) if N = 2". The covariance matrix, R.,, is Toeplitz. However, note that the output channels of
the FFT are not stationary with respect to each other; i.e., Rxx is not a Toeplitz matrix. The N outputs
of the FFT are then processed by using the Fast Orthogonalization Network discussed in the previous
sections. Figure 10 is a simplified diagram of this processor.

X1 X2 XN

a-i) a-1 A

____ FFT

xi X2 { * XN

' r , I

FAST
ORTHOGONALIZAT ION

NETWORK (FON)

DOPPLER BINS

Fig. 10- Adaptive doppler processor
using a lattice filter

Let the input data set have the form depicted in Fig. 11. Here the input data are arranged so that
the returns from sequential range cells are sequential samples of a given channel and the data in each
channel at a given range are the time-delayed (one PRI) return of the preceding channel. In this
figure, there are N, range bins with Ro the minimum range considered and AR is the range resolution.
Returns from a given range bin occur one per PRI time step. If N PRIs are in the processing time win-
dow, then the returns in the nth PRI form the nth input channel; i.e., rmn is the radar return from the
mth range cell in the nth PRI interval. If this input data set is block processed by using the adaptive
doppler processor as seen in Fig. 10, then the output data set will have the form depicted in Fig. 11.
This matrix of output data will have elements, 'nm, corresponding to the returns in a given range-
doppler bin. If blocks of input data are sequentially processed, then the resultant output data sets can
be inputted into a postdetection processor for the detection and tracking of targets.
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- DATA

SET
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Fig. 11 - Input and output data sets for adaptive doppler processing

IX. CONCLUSIONS

A numerically efficient algorithm has been developed for adaptively filtering multiple input chan-
nels into desired multiple output channels. The algorithm is a type of adaptive lattice filter which
employs a Fast Orthogonalization Network (FON) algorithm for numerical efficiency. Past researchers
have concentrated on developing efficient lattice algorithms for the processing of stationary input chan-
nels. The algorithm developed in this report was designed to adaptively filter nonstationary input chan-
nels. Various implementations of the FON algorithm were given, and a performance measure based on
the number of operations was formulated. An application of the technique to adaptive doppler process-
ing was presented.
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